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Abstract—In commercial Video-on-Demand (VoD) systems,
user’s Quality of Experience (QoE) is the key factor for user
satisfaction. In order to improve user’s QoE, VoD providers
replicate popular videos in geo-distributed Cloud and deploy
cache servers close to users. Generally, the VoD provider selects
a server for the user request according to the user’s location.
Usually geographically closely located servers would provide
lower network delay. However, the performance of VoD servers
deployed in cloud virtual machines (VM) depends not only on
the network delay but also resource contention due to other
VMs and highly dynamic user demands. Thus, QoE offered
by the server varies greatly over time as user demands and
network traffic fluctuate regardless of the location. Selecting
a server close to users sometimes reduces the network delay
but cannot guarantee QoE in general. We believe that end-
users have the best perception of server performance in terms
of their QoE rather than the servers themselves. What user
perceives incorporate performance of all elements, such as
network delay and server response time in VoD service. We
propose VoD server selection schemes that dynamically select
servers according to user’s QoE feedback. We integrate our
server selection schemes with Dynamic Adaptive Streaming
over HTTP (DASH) clients and evaluate our system both in
simulation and in Google Cloud. Results show our system
improves user QoE up to 20% compared to existing solutions1.

Keywords-Video on Demand, Quality of Experience, Server
Selection, Cloud applications

I. INTRODUCTION

Popular VoD providers, Netflix, YouTube, Amazon Video

and Hulu together contribute over 52% of downstream traffic

in North America in 2014 [1]. Improving users’ Quality of

Experience (QoE) for user satisfaction is crucial to gain the

market share.

In order to meet the high demand of video services from

billions of users, VoD providers either build their Content

Delivery Network (CDN) on their own data centers or they

resort to commercial Cloud and CDN providers [2] for

content delivery. Many video contents are generally repli-

cated over multiple locations [3]. Upon user request, VoD

provider assigns a particular server to a user. Server selection

scheme significantly impacts user’s QoE. A measurement

study on YouTube shows that network delay between a

1This work was supported in part by the FCT (Portuguese Foundation for
Science and Technology) through the Carnegie Mellon Portugal Program
under Grant SFRH/BD/51150/2010, CMU-SYSU CIRC and SYSU-CMU
IJRI.

user and data center plays an important role in YouTube

video selection process [2]. Other factors influence its server

selection as well, such as load-balancing, diurnal effects,

availability of videos, and hot-spots. Vijay et al. find that

Netflix replicates content across multiple commercial CDNs

and assigns its users a particular CDN. This assignment

remains unchanged over many days even if other CDNs can

offer better quality of experience [4]. They also show that

the network bandwidth to users can be improved by 12% if

a CDN server is adaptively selected thus improving the user

QoE. However, optimal assignment is difficult as network

status cannot be obtained in real-time.

When VoD systems are deployed in Cloud, the server

and network performance vary dynamically as the resources

are shared and Cloud users generally neither have control

nor visibility of the resources. The VoD provider gen-

erally selects a server for the user request according to

the user’s location. Usually geographically closely located

servers would provide lower network delay. However, the

performance of VoD servers deployed in Cloud virtual

machines (VM) depends not only on the network delay

but also resource contention due to other VMs and highly

dynamic user demands. Thus, QoE offered by the server

varies greatly over time as user demands and network traffic

fluctuate regardless of the location. Selecting a server close

to users sometimes reduces the network delay but cannot

guarantee QoE in general. Furthermore, even if the servers

can monitor all system parameters such as CPU, memory,

I/O and storage utilization as well as network metrics, it

would be extremely difficult to formulate a proper algorithm

to determine the best server for the user in terms of user

QoE. Complex interactions of server VMs and network are

quite challenging.

We believe that end-users have the best perception of

server performance in terms of their QoE rather than the

servers themselves. What users perceive incorporate perfor-

mance of all elements, such as network delay and server

response time in VoD service. We propose two VoD server

selection schemes that dynamically select servers according

to user’s QoE feedback. The first one is called QoE driven

Adaptive Server Selection (QAS). In QAS, each user mon-

itors its real-time QoE for all available servers assigned to

the user and adaptively selects a server according to its own

perception of QoE. The second one, called Cooperative QoE
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driven Adaptive Server Selection (CQAS), users cooperate

to obtain other users’ view on additional servers. What users

perceive as a good server is much more informative than a

lot of system and network metrics.

We integrate our server selection schemes with Dynamic

Adaptive Streaming over HTTP (DASH) clients and evaluate

our system in production cloud environment. We evaluate

our system both in simulation and in Google Cloud. Results

show our system improves user QoE up to 9% and 20%

compared to existing solutions for QAS and CQAS respec-

tively.

The remainder of the paper is organized as follows.

Section II shows related works. Section III presents our

system design. In section IV, we address a practical content

discovery issue that facilitates QAS in VoD system. Section

V describes how QAS and CQAS can be integrated into a

DASH client. Section VI provides evaluations of QAS and

CQAS for DASH clients in both simulation and real-world

experiments in Google Cloud. Conclusions are presented in

section VII.

II. RELATED WORKS

There are several works in the area of server selection in

large-scale VoD systems. YouTube study [2] concludes that

the network delay between server and user is an important

factor that impacts YouTube’s server selection. [4] suggests

that instantaneous bandwidth between a user and Netflix

CDN could be used for server selection. Nevertheless, ob-

taining real-time network delay or instantaneous bandwidth

is extremely difficult. [6] proposes to use QoE as a motive

to select paths in multi-path streaming. However, their work

needs additional servers that act as intermediate nodes to

choose among multi-path. Dynamic Adaptive Streaming

over HTTP (DASH) improves user QoE under dynamic

network environment [7]. DASH adapts video quality based

on the available bandwidth of a connection between user and

video server. In order to achieve the rate-adaption, DASH

moves the control of bit-rate selection entirely to the client

side and encodes videos into multiple bit-rates beforehand.

DASH client periodically probes the available bandwidth

and buffer condition to decide the quality level of each video

chunk.

III. OVERVIEW OF QAS AND CQAS

The main concept in QAS and CQAS is to make each

client aware of several candidate servers and evaluate these

candidate servers in real time according to its own QoE.

The client controls the server selection in real-time so it

can adaptively select the best server to satisfy its QoE.

We deploy an agent (client agent) running in each client

to collect user’s experience on different servers. The server

runs an agent (cache agent) that provides an initial set of

candidate servers to the client as shown in figure 1.
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Figure 1: System Design

The client agent first connects to the cache agent to query

a list of candidate servers that are geographically close

with possibly low network delay. We propose a distributed

algorithm, Multi-Candidate Content Discovery (MCCD), for

cache agents to autonomously discover K closest candidate

servers for all available videos. VoD systems generally

cache videos dynamically according to the popularity of

videos. Existing content discovery schemes such as DHT

does not adapt to dynamic changes in content placement.

Simple content discovery algorithms in unstructured P2P

network scale poorly due to flooding and do not guarantee

to find the content. In order to reduce the lookup time of

K candidate servers, we cache a Candidate Server Table

(CST)2 in each cache agent. It includes K closest candidate

server for popular videos. As content placement and server

topology change dynamically, CST is updated according to

these changes. After obtaining a list of candidate servers, the

client agent initiates multiple connections to these candidate

servers to stream the video. During streaming, the client

agent evaluates candidate servers with its QoE in real time

and chooses the one that offers the best QoE. In DASH and

HTTP progressive downloading, video chunk is a segment

of video that usually lasts several seconds. We propose a

real-time QoE model that computes user QoE in terms of

video chunk. We integrate QAS and CQAS with Dynamic

Adaptive Streaming over HTTP (DASH) client and compare

them in production Cloud.

In summary, QAS and CQAS operate as follows:

1. Each client agent picks up the closest VoD server as its

cache agent (via DNS based server selection).

2. Cache agents run MCCD to discover K closest servers

in terms of network latency for all available contents.

3. Client agents query their cache agents to obtain a candi-

date server list for the video request.

4. The client agents run QAS in DASH to stream the video.

2The CST can be cached for all videos in commercial VoD systems like
Netflix or Hulu whose collections range from tens to hundreds of thousands
of videos. Considering, there are totally M = 100, 000 videos available
and K = 4 candidate servers, the size of CST is M · K · 32Bytes =
12.8MB. For VoD system like YouTube whose unique reference file ID
counts up to 25 million and keeps increasing, the CST can be maintained
only for popular videos.
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5. The client agents that run CQAS to share their QoE on

candidate servers to other clients.

IV. MULTI-CANDIDATE CONTENT DISCOVERY

We describe MCCD that discover K candidate servers

that are close to the client for one video request.

A. Location Aware Server Overlay

An easy way to discover videos from adjacent servers

is to make each server flood their cached video list to

servers nearby. To run flooding-like algorithms, we need

an overlay network to connect cache agents close to each

other. To prevent duplication, the overlay network has to be

built without loops. We construct a simple location-aware

overlay network using Algorithm 1. It builds a tree graph,

denoted as G. A = {A1, A2, · · · , AM} are M cache agents

to be organized. The algorithm first finds two nodes with

the minimum RTT among all pairwise RTTs and connects

them to initialize G. The pairwise RTTs are the average

of RTTs obtained via 10 ICMP pings between all pairs of

servers at the time of overlay construction. It then iteratively

adds a node that has the minimum RTT to the closest node

in G, as shown in line 4 to line 7. To delete an existing

node Ad, all child nodes of Ad need to be reconnected

to nodes that are not in Ad’s branch. Though the overlay

construction introduces ping traffic between all pairs of

servers, we believe it is acceptable as it is a one-time cost.

Algorithm 1: Construction of Location Aware Overlay

Data: All cache agents, A = {A1, A2, · · · , AM}
Pairwise RTTs between agents, T = {tij , 1 ≤ i ≤M}

1 Initialize overlay graph:
G = {V,E}, V = {Ax, Ay}, E = {(Ax, Ay)} where
txy = minT

2 Denote B = A− {Ax, Ay}
3 while B �= ∅ do
4 Denote TBV = {tbv|Ab inB,Av ∈ V }
5 Find txy = minTBV

6 Update G with V = V ∪ {Ay} and
E = E ∪ {(Ax, Ay)}

7 B = B − {Ay}

B. MCCD

Unlike unstructured P2P network, we run the content

discovery once at bootstrapping stage and cache the Can-
didate Server Table (CST) for popular videos in all cache

agents. We propose a distributed content discovery algo-

rithm, MCCD, to build CST on each cache agent as shown

in algorithm 2. For each cache agent Ai, Vi = {vj} ⊂ V is

the list of videos cached locally in Ai , where V = {vt|t =
1, · · · , T} denotes all available videos in VoD system. In

MCCD, each agent builds its own CST at the bootstrapping

stage by flooding its locally cached video list to its directly

connected neighbors. The neighbors receiving the list will

merge list items into their own CSTs and iteratively forward

the newly added items to their neighbors until each agent’s

CST is complete. Different from flooding algorithms, our

cache agent stops forwarding messages once K candidate

slots have been fully filled. We prove in theorem 1 that the

amount of MCCD traffic is constant. The proof is omitted

due to the page limit.

Theorem 1: The total outbound traffic for an agent A to

build CSTA is proportional to T ·K, where T is the total

number of videos and K is the number of candidate servers.

The outbound traffic in MCCD is independent of the size

of the server overlay network. It increases linearly with the

number of videos. It is acceptable as the number of popular

videos is finite. Once CST on a cache agent are complete,

the cache agent can look up candidate servers from its local

CST and answer the client’s request directly.

Algorithm 2: Multi-Candidate Content Discovery

Data: Local cached contents for agent

Ai, Vi = {vt} ⊂ V
1

2 begin
3 Initialize CST for Ai as

CSTAi
= {L(j)|1 ≤ j ≤ T}

4 for vj ∈ Vi do
5 L(j) = {< Ai, 0 >}
6 Initialize content update message for Ai as

Ui ← ∅
7 nforward = 1 for vj ∈ Vi do
8 Add < vj , Ai, nforward > into Ui

9 Send Ui to all neighbors of Ai

1111 while Receive Un from node An do
12 Ui ←− ∅
13 for < vj , A, nforward >∈ U do
14 Sort items in L(j) by their values ascendingly

15 if ‖Lij‖0 ≤ K then
16 L(j) = L(j) ∪ {< A,nforward >}
17 Ui = Ui ∪ {< vj , A, nforward + 1 >}
18 else
19 if L(j)[k].value > nforward then
20 Delete Lj [K]
21 Lj = L(j) ∪ {A, nforward}
22 Ui = Ui ∪ {< vj , A, nforward + 1 >}
23 if Ui �= ∅ then
24 Send Ui to all Ai’s neighbors except An

C. CST Maintenance

Cache agents need a mechanism to update CST to handle

the changes in server overlay network and content place-

ment. We develop following mechanisms to update CST.
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Video Deletion: When agent A deletes a video, agent A
notifies all other agents about the deletion. Agent A floods

a message ”DELETE vd on A” to all neighbors and lets

the neighbors update their CSTs and forward the message

to their neighbors iteratively.

Video Addition: Agent A caching a new video does not

need to notify all other agents. Only servers nearby are

interested in what agent A is caching. Agent A sends an

update message with the content to all its neighbors.

Cache Agent Leaving: Before performing overlay changes

as section IV-A describes, the leaving agent sends out

deletion messages for all its cached videos.

Cache Agent Joining: When an agent joins to the cache

agent overlay, the agent adds all its cached items to an update

message and floods the update message in the updated

overlay network.

Periodic Maintenances: An agent’s CST can be corrupted

or missing items. In order to complete the agent’s CST, each

cache agent periodically runs MCCD to fix corrupted CSTs.

The period can be set to a relatively long period (i.e. several

hours or one day).

V. QAS AND CQAS

In this section, we describe QAS and CQAS in detail.

QAS is a QoE driven Adaptive server Selection scheme in

which the client selects servers adaptively according to its

QoE on candidate servers. CQAS is a group of QAS clients

that connect to the same cache agent, cooperating to know

each other’s QoE on candidate servers.

A. QoE Model

Measuring user Quality of Experience (QoE) for video

streaming is difficult. It involves a lot of factors such as,

the quality of the video, the frequency of freezing events,

the duration of each freezing event, the join time and so

on. Besides, there are other factors that influence QoE such

as the genre and type of videos, the popularity of videos

and the user device resolution [5]. In this paper, we ignore

factors that do not change once the streaming starts, such as

the join time, the genre and the type of video.

To compute real-time QoE, we propose an approximate

chunk QoE model that evaluates video quality and freezing

events for every chunk within a DASH streaming session.

In DASH, video quality of a chunk is determined only

by its bit-rate. Study in [11] claims that video quality

follows a logarithmic law over bit-rates, so they propose

a video quality model for DASH as shown in Equation (1),

where ri is the selected bit-rate for chunk i and r is the

possibly maximum bit-rate. a1 and a2 are positive adjustable

constants.

Qvideo quality(ri) = a1 ln
a2ri
r

(1)

We also consider freezing events. There are only two pos-

sible scenarios for freezing. The streaming either freezes

before the chunk is received or does not freeze until the

chunk is received. We regard no freezing as the best case.

The QoE deteriorates as the freezing time gets longer. Kester

et al. [12] find that user experience deteriorates with the

freezing time as shown in Equation (2). t denotes the length

of freezing time and c1 ∼ c3 are positive fitted coefficients.

When t = 0, Qfreezing is 5, which is the maximum value in

MOS score system [13].

Qfreezing =

{
5− c1

1+(
c2
t )c3

t > 0

5 t = 0
(2)

Video quality and delivery effect are both important for user

QoE. We simply combine above two models to measure the

chunk QoE. However, any other QoE model can be used in

our work without difficulty.

Q(t, ri) = δ ·Qfreezing(t) + (1− δ) ·Qvideo quality(ri) (3)

B. DASH Streaming

In order to validate the effectiveness of QAS scheme, we

integrate QAS in popular DASH streaming clients, referred

to as QAS-DASH. Before describing how QAS works in

DASH, we briefly introduce DASH streaming. DASH is the

MPEG adaptive streaming standard, which includes a de-

scription of Media Presentation Description (MPD) manifest

file and video chunks. The MPD manifest file describes the

available bit-rates of video tracks and audio tracks, their

URL addresses, chunk lengths and other characteristics.

DASH client downloads MPD files beforehand to retrieve

a complete list of video and audio chunks. DASH client

then determines the preferred bit-rate of chunk to download

based on its available buffer size and network bandwidth.

We denote the bit-rate selection in DASH as a function of

instantaneous bandwidth bwi and the available buffer size

Bi at previous chunk, as shown in Equation(4).

ri+1 = DASHselection(bwi, Bi) (4)

Details of commercial players like Microsoft Smooth

Streaming and Adobe OSMF can be found in [14]. We use

this module in QAS-DASH and CQAS-DASH and it can be

instantiated by any existing bit-rate selection logic.

C. QAS-DASH

QAS-DASH gives the client agent the flexibility of chang-

ing servers dynamically to achieve desirable QoE for every

chunk. The client agent starts with the closest server and

initializes each candidate server with an empirical QoE eval-

uation. As the video plays, the client agent updates candidate

servers’ evaluations with its own experience. When the client

agent requests a video chunk, the client agent chooses a

server according to its real-time QoE feedback. Details of

QAS-DASH are described in algorithm 3. fQoE(S) is the

real-time QoE evaluations for candidate servers S. It is

initialized as an empirical QoE value, denoted as Q̃. In line
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3, client agent pings all candidate servers and selects the

closest one to stream the initial chunk. In line 4, the smallest

bit-rate is selected as the bit-rate of initial chunk. Each

iteration in the WHILE loop is the server selection process

for one chunk. Line 9 to line 11 shows the QoE evaluation on

candidate servers. The algorithm uses an exponential moving

average to update fQoE(S) in line 11 and selects the best

server based on fQoE(S) in line 14. Tchunk is the playback

time of a chunk. tbuffering
i , bwi, ri and Bi are buffering

time, bandwidth capacity, bit-rate and buffer size measured

at the time receiving chunk i. The client only switches to

the selected server probabilistically. This prevents server

overload and synchronization of server changes.

Algorithm 3: QAS-DASH

Data: Candidate servers, L = {S1, S2, · · · , Sk}
Available Bitrates, R = {r1, r2, · · · , rmax}

1 Initialize:
2 fQoE(S)← Q̃ for all S ∈ L ;

3 Initialize the selected server to download chunk

i = 0 as the closest server to current client

S0 ← find closest(L) ;

4 Initialize r0 ← min(R) ;

5 B0 ← Tchunk ;

6 Downloading chunk i = 0;

7 while i is not the last chunk do
8 Record chunk metrics: tbuffering

i , bwi, r
i, Bi ;

9 Get QoE for current chunk:Qi = Q(ri, tbuffering
i );

10 Update QoE assessment and bit-rate selection:
11 fQoE(Si)← α ·Qi + (1− α) · fQoE(Si);
12 Adaptively select bit-rate for next chunk:

ri+1 ← DASHselection(bwi, B
i) ;

13 Find the server with the best QoE evaluation:
14 Smax = argmaxS∈L{fQoE(S)} ;

15 Probabilistically select Si+1 from Smax and Si:
16 Si+1 = probSelect(Si, Smax) ;

17 if Si+1 �= Si then
18 ri+1 ← min(ri+1 + 1, rmax) ;

19 Download chunk i+ 1 with ri+1 from Si+1 ;

20 i← i+ 1 ;

D. CQAS

In algorithm 3, QAS-DASH client evaluates fQoE(S)
based on its own experience. It is possible to avoid selecting

some servers that gave bad QoE in the past. Besides, the

QAS-DASH client initialize fQoE(S) with an empirical

value Q̃. If the initially selected server gives the client a

better QoE than the empirical value Q̃, the QAS-DASH

client will not try any other servers. Thus the client will

not even have a chance to explore other candidate servers.

We believe the cooperation among client agents would be

beneficial in finding the better server. An agent cooperatively

Algorithm 4: CQAS-DASH on Client Agent

Data: Client Agent: Au

Candidate servers, L = {S1, S2, · · · , Sk}
QoE Experienced: fu

QoE(s), s ∈ Lu

1 while i is not the last chunk do
2 Run QAS-DASH algorithm line 8 to 12;

3 if i%W == 0 then
4 Send fu

QoE(s) for s ∈ Lu to the closest cache

agent Ac;

5 if Receive F c
QoE(L

u) from the cache agent Ac then
6 fu

QoE ←− F c
QoE ;

7 Run QAS-DASH algorithm line 13 to 20;

Algorithm 5: CQAS-DASH on Cache Agent

Data: Cache Agent: Ac

QoE Evaluation Table:

F c
QoE(S), S ∈ Ac = {Ac

1, A
c
2, · · · , Ac

M}
1 while TRUE do
2 if Receive fu

QoE(s) from client agent Au for
candidate servers s ∈ Lu then

3 F c
QoE(s)← (1− λ) ·F c

QoE(s) + λ · fu
QoE(s) for

s ∈ Lu;

4 Send F c
QoE(s), s ∈ Lu to client agent Au;

learns about servers’ performance experienced by others.

The cooperative learning of server performance based on

QoE masks the complexity of network, server and user

behaviors. Clients in neighboring network or data center

would find the better server without understanding details of

network or server status. We assume the client agents that are

associated to the same cache agent are close to each other.

The cache agent can be a rendezvous point for client agents

to exchange their QoE on candidate servers. The cooperation

among clients is detailed in Algorithms 4 and 5. Algorithm

4 shows how a client agent Au reports its QoE on candidate

servers to its cache agent Ac. Algorithm 5 shows how the

cache agent Ac evaluates server performance according to

clients’ QoE. It also illustrates how the cache agent replies

to the client with the server performance evaluated by latest

user QoE.

Our cooperation algorithm works similarly as ant in

ant colony [15]. Ants in the colony leave pheromone on

paths they pass by to help others to find a shorter path

to resources. The shorter the path is to the resources, the

stronger the pheromone is left on the path. Other ants that

have no experience with these paths always choose the path

according to the strength of the pheromone on these paths.

However, the QoE based server evaluations are not exactly

the same as the pheromones. The pheromone on a path
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evaporates as time elapses if there are no ants passing the

path. In server selection, clients do not converge to one best

server. When users adaptively select servers with the best

QoE in real time, load would be balanced among servers.

It rarely happens that one server is not selected by any

client. The evaporation of pheromone is reflected as the

updating process of server evaluations in algorithm 5. Client

agent sends its local QoE evaluation for candidate servers

to the cache agent periodically and the cache agent builds

up an evaluation table F c
QoE(S) for all servers. It accepts

client agents’ periodic updates and updates its F c
QoE(S)

with a forgetting factor (1− λ). The forgetting factor helps

evaporating the outdated server evaluations. The latest server

QoE for the client’s candidate servers Lu is then sent

back to the client agent. Therefore, the better QoE a client

experiences with a server, the better evaluation of the server

is updated in the cache agent. Even clients that do not have

experience with that particular server learn other neighboring

clients’ latest experience with the server.

E. Overhead Analysis of QAS and CQAS

QAS and CQAS-DASH clients monitor QoE on candidate

servers and select servers adaptively within a streaming

session, thus introduce communication and computation

overhead. The QAS-DASH client communicates with its

closest cache agent only once, before the streaming session

starts, to obtain K candidate servers for the requested video.

The CQAS-DASH client periodically reports its evaluations

of K candidate servers to its closest cache agent. Consid-

ering there are N clients reporting K values to M cache

agents periodically, on average each cache agent receives

K · N/M values per period. In large-scale VoD system,

the number of servers M is supposed to be provisioned

proportional to user demand N , namely N/M = c is a

constant. In this paper, we assume K is a small integer

between 2 ≤ K ≤ 5, so K · N/M is a constant. As long

as each cache agent can afford K · N/M traffic in period

T , we believe the constant communication overhead is

worthy for the QoE improvement described later in Section

VI. About computational overhead, each QAS/CQAS-DASH

client computes QoE for each chunk and maintains F c
QoE(S)

value for K candidate servers, yet the incurred overhead

should not be noticed on user side.

VI. EVALUATIONS

A. Google Cloud Experiments

We evaluate the performance of QAS-DASH and CQAS-

DASH in Google Cloud. We implement both client and

cache agents in Python and deploy cache agents in Google

Cloud. We deploy 8 cache agents in 8 different zones in

Google Cloud and use 9 clients, in Netherlands, Ireland, Vir-

ginia, Iowa, Texas, California, Hong Kong, Singapore, and

Japan. Videos are encoded into 9 bit-rates varying from 2Kb

to 6Mb. To emulate content placement algorithm, the most

popular video is cached in all servers and the least popular

video is only cached in two servers randomly chosen. The

number of servers caching a particular video is proportional

to the video’s popularity. We assume the video popularity

follows Zipf distribution. We force standard DASH client

to always pick up the closest server (with minimum RTT)

as the DNS based server selection implemented in many

production systems. We set the number of candidate servers

as 2 in QAS-DASH and CQAS-DASH.
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Figure 2: Single Session Experiment Setup

1) Single Session Experiment: We show how QAS-

DASH client adaptively switches servers in figure 3 when the

server capacity is throttled. Figure 2 shows the experiment

setup. We deploy cache agents in two zones that belong to

the same region in Google Cloud. We do not have control on

the commercial Cloud and the network between the client

and two cache agents. We use Wonder Shaper [16] to throttle

server capacity to emulate the changes in the bandwidth

between client and server. Server A is provisioned with

10Mbps capacity initially. We later throttle its bandwidth

capacity to 1Mbps after the video played 30 chunks. The

capacity in server A then recovers to 10Mbps after the

video played 60 chunks. Server B is provisioned 4Mbps

all the time. Figure 3 (a) compares chunk QoE values

for DASH, QAS-DASH and CQAS-DASH clients. DASH

client’s chunk QoE drops when server A is throttled. QAS-

DASH client drops when it switches to server B, but with a

less degradation. CQAS-DASH explores two servers in real

time and always chooses the one offering better QoE. Figure

3 (b) illustrates the benefit of agent cooperation in CQAS-

DASH. QAS-DASH client does not know A when A’s capac-

ity is recovered. CQAS-DASH client learns increasing QoE

with server A when A’s capacity is recovered. QAS-DASH

client evaluates servers only based on its own experiences

so it is not aware of server A’s recovery. On the other hand,

CQAS-DASH client dynamically finds others’ evaluation

and selects servers according to the updated evaluation.

Figure 3 (c) draws which server is selected for all chunks in

various clients. DASH client selects server A and remains
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Figure 3: Single Session Experiment

with it. QAS-client switches to server B once it suffered

bad QoE with server A. When A’s capacity is recovered,

QAS-DASH client relies on its own experience only and

remains with B. On the contrary, CQAS-client retrieves

QoE evaluations from its cache agent and becomes aware

of server A’s recovery quickly.

2) Multiple Session Experiment: We test 54 video ses-

sions with 9 clients in figure 4. Figure 4 (a) shows the

deployment3 and the overlay network for all agents4. Figure

4 (b) shows the cumulative distribution of session QoE for

all user requests. Session QoE is the average of all chunks’

QoE in a single video steaming session. Considering the

client with the worst QoE, CQAS’s worst client has better

QoE than QAS’s worst client, and better than DASH’s

worst client. The user QoE in QAS and CQAS at every

percentiles improves over DASH. In figure 4 (b), when

we observe the percentage of users around 0.2, it shows

that DASH guarantees 80% users with QoE above 3.5 and

CQAS guarantees 80% users with QoE above 3.78. In our

experiments, we set the weight of freezing in QoE model in

Equation (3) as 0.5, which means if there is no freezing, the

chunk QoE is above 2.5. An increase of session QoE from

3.5 to 3.78 is equivalent to guarantee 80% users streaming

videos with doubled bit-rate. In figure 4 (c), we show the

cases where QoE can be improved most. It plots the QoE

improvement for QAS-client over DASH on a ratio of RTTs

to two candidate servers. The size of the circle increases

as the QoE improves. The x-axis and y-axis are the RTTs

from the client to two candidate servers. RTTs to candidate

servers are obtained by an average of 10 pings before the

experiment starts. Figure 4 (c) illustrates that QoE driven

server selection is more effective in improving QoE if two

candidate servers have similar RTTs to the client.

3Because we did not have enough resources to emulate a large number
of clients, we throttle the maximum bandwidth of each server to 4 Mbps
to emulate the server overloading that would happen in real systems.

4Because we cannot find out exactly where each zone is located in
Google Cloud, we inferred locations of all zones based on their RTTs
to all clients and available locations of Google data centers when we
draw figure 4 (a). Google datacenter locations can be found at http:
//www.google.com/about/datacenters/inside/locations/.

B. Large-scale Experiment in Simulation

To evaluate large scale QAS-DASH and CQAS-DASH,

we simulate both client agents and cache agents in a 3-level

hierarchical network in Simgrid [17]. The network consists

of 8 ASes. Each AS router connects 8 access networks

and a cache server. We deploy 8 clients in each access

network, totally 512 clients. Root cache server is co-located

with the backbone router connecting 8 ASes. We assume

each cache cluster is under-provisioned to accommodate

concurrent streaming of all 64 users in the AS. Available

capacity of cache servers is set to 50 Mbps. Capacity of

backbone links are set to 250 Mbps. Users send requests

following Poisson process with arrival rate randomly chosen

from {0.1, 0.01, 0.001}. Each client agent find K = 3
closest cache servers as candidate servers. The cumulative

distribution of session QoE for all clients is compared in

figure 5. Results show that QAS-DASH improves user QoE

over DASH at almost all percentiles. The session QoE

improvement at 90th percentile for QAS-DASH is (3.1822−
2.9216)/2.9216 = 8.92% over DASH. The CQAS-DASH

can further improve (3.5004 − 3.1822)/3.1822 = 10.13%
over the QAS-DASH, which equals to an improvement of

QoE up to 20% over DASH. It indicates that the QoE

guaranteed for 90% users has been improved up to 20%.

When we map the QoE values to bit-rate levels, an increase

of QoE from 2.92 to 3.5 is equivalent to a raise of bit-rate

from 280kbps to 660kbps.
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Figure 5: CDF of Session QoE in Simgrid Experiment
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Figure 4: Multiple Session Experiment

VII. CONCLUSION

In this paper, we proposed two server selection schemes

that dynamically select servers according to users’ QoE feed-

back for VoD system in the cloud. In contrast to common

practices of server selection that select servers according

to network delay and server response time, we use users’

real-time QoE as an evaluation of server performance. In

order to validate our server selection schemes in production

Cloud environment, we integrated our proposed schemes

with DASH clients and evaluate the system both in Google

Cloud and in simulation. Experiments in Google Cloud

tested 9 clients at various locations. Results showed that by

using our server selection schemes, the average bit-rate of

80% streaming sessions could be doubled. In simulation, we

tested our server selection schemes in a larger scale with 512

clients. Results showed that the QoE guaranteed for 90% of

users could be increased by 20%. In our future work, we aim

to test the system in a large-scale setting with thousands of

clients and hundreds of servers. We believe our QoE driven

control can also benefit other aspects of system management,

including cache management and resource provisioning.
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