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Abstract—Commercial large-scale VoD systems such as Netflix
and Hulu rely on CDNs to deliver videos to users around the
world. Various anomalies occur often and degrade users’ Quality
of Experience (QoE). Detecting and locating such anomalies
are highly complex due to a large number of different entities
involved in the end-to-end video delivery. These entities include
VoD provider, CDN/Cloud providers, transit ISPs, access ISPs,
and end user devices. QoE perceived by the users is a critical
metric for VoD providers. We propose QWatch, a scalable
monitoring system, which detects and locates anomalies based
on the end user QoE in real-time. We evaluate QWatch in a
controlled VoD system and production Microsoft Azure Cloud
and CDN. QWatch effectively detects and locates QoE anomalies
in our extensive experiments. We discuss insights obtained from
running VoD system with 200 worldwide users in production
Cloud1.

I. INTRODUCTION

Video on Demand (VoD) systems are complex. VoD
providers, such as Netflix and Hulu, rely heavily on third-
party systems including Cloud providers and Content Deliv-
ery Networks (CDNs) [1]. CDN, such as Akamai, Level 3
Communications and Limelight Networks, provide the content
delivery [2]. Cloud providers, such as Microsoft and Amazon,
manage and provision resource for VoD systems. As there are
multiple entities involved in the end-to-end video delivery, it is
quite challenging to detect and locate performance problems.

Anomalies affect Service Level Agreements (SLAs), such
as virtual machine (VM) uptime and availability. SLA viola-
tions sometimes do not degrade user QoE as shown in our
experiments. We believe SLA is not sufficient to ensure QoE.
Server system metrics, such as utilization and throughput of
CPU, memory, disk and network do not fully reflect the user
experience of VoD in the Cloud. There are many other factors
in Cloud including transit and client networks that impact the
user QoE. The end-user device also plays a significant role in
QoE. The VoD delivery chain consists of various application
servers, CDN, ISP networks, local networks and user devices
including browsers. An anomaly in any of these components
can degrade user experience. Each system in the VoD delivery
chain only has a partial view of the VoD system. Different
entities monitor anomalies independently. Thus they fail to
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give a full picture of the VoD delivery chain. Detection and
localization of anomalies are very challenging without a clear
view of end-to-end VoD delivery chain.

We propose QWatch, a scalable monitoring system for
large-scale VoD in the Cloud. QWatch detects and locates
anomalies using the end-user QoE in real time. We believe
the end-user QoE best reflects VoD system performance.
The user satisfaction is the ultimate performance measure of
any complex systems. Regardless of what traditional perfor-
mance parameters would indicate, if the end user QoE is
satisfactory, the system is deemed to be operating properly.
The end-user QoE masks the complexity of understanding
proper operation of VoD systems using numerous system
parameters. In QWatch, the end user devices cooperate and
share their QoE and path information in order to detect
the locate anomalies. We validate QWatch through extensive
experiments in a controlled VoD system in Microsoft Azure
Cloud and Amazon CloudFront CDN. Our experiments show
that QWatch correctly detects QoE anomalies that cannot be
detected using various network/system metrics. QWatch also
avoids false positives in anomaly detection methods based on
system metrics. QWatch successfully locates QoE anomalies.
We also share several insights obtained from running VoD
system with 200 geographically separated users in production
Cloud in later sections.

II. RELATED WORK

Earlier works of anomaly detection in VoD services use
various system parameters to infer QoE issues. Ajay et al [3]
collect various system metrics in a large IPTV network and
apply supervised learning algorithm to learn how these metrics
are related to customer call records noted as anomalies. [4] [5]
detect anomalies based on critical network/server metrics that
could possibly impact end-user QoE. They tend to have many
false positives and false negatives. Selecting these metrics
is difficult in end-to-end video delivery with many different
entities. End-user QoS metric is also used to detect anomaly
in [6]. Its detection requires off-line computation. There are
several works on identifying, locating and diagnosing QoE
issues. Junchen et al analyze end-user data using unsupervised
learning to find the root cause of QoE problems [6]. Giorgos
et al diagnose QoE issues by supervised learning on various
network and system metrics from different vantage points
[7]. There are also commercial data analysis programs that9781-5090-1445-3/16$31.00 c© 2016 IEEE (CloudCom’16)



statistically infer possible root causes of QoE issues (YouTube)
[8] [9]. Our previous work analyze QoE data in real time to
manage and control VoD systems [10] [11]. In this work, we
apply the QoE analysis for anomaly detection and localization.

III. SYSTEM OVERVIEW

A. Background

VoD systems mostly use third-party CDNs for the content
caching and content delivery. CDNs cache popular videos in
their edge servers in different geographical locations. Video
contents are delivered to users from the closest edge server to
the user. CDN could reduce network latencies to improve end
user QoE.

Fig. 1. An example video delivery path from AWS CloudFront to Carnegie
Mellon University Network

We use a device in Carnegie Mellon University network
to stream a video from a VoD website cached in Amazon
CloudFront. The video goes through several networks. These
networks are managed by the Cloud/CDN provider and mul-
tiple transit ISPs and a local ISP. Anomalies can occur in any
part of this delivery path shown in Figure 1. In this experiment,
there are 5 ISPs involved in the end-to-end video delivery
path. When the user QoE degrades, it would be very difficult
to locate the problem as there is no viable way to access
information from these independent entities in the path.
B. System Design

QWatch deploys an agent in the client’s video player,
referred to as client agent. It evaluates user QoE in real-time.
We determine that the VoD has an anomaly when the user QoE
drops below pre-determined Service Level Agreement (SLA).

Once an anomaly is detected, locating the source of anomaly
can be challenging as there are multiple entities involved
in the end-to-end video delivery. QWatch reconstructs the
underlying network topology using traceroute from users to
their CDNs. QWatch then correlates multiple users’ QoEs with
their network paths to locate the source of QoE anomalies.
Correlating QoE data from multiple users allows us to infer
normal operating nodes and abnormal nodes. If a user has an
acceptable QoE, we assume that all nodes in its video delivery
path are functioning properly. If any of these nodes intersect
with other video delivery paths, they are excluded from the

possible set of anomalous nodes. We develop locator agent to
collect traceroute data from users periodically. The locator
agent also collects the end-user QoEs from client agents in
real time for the localization of QoE anomalies.
C. Scalability

The commercial Cloud allows us to scale QWatch to
accommodate the increasing number of users in the VoD
system. QWatch clusters users by regions in the Cloud and
applies horizontal scaling for locator agents within each Cloud
region. Specifically, DNS based load balancing is used to
direct users to locator agents in the closest Cloud region as
shown in Figure 2. The commercial Clouds, such as Google
Cloud, Amazon Web Service and Microsoft Azure, provide
DNS load balancing services. Within a Cloud region, QWatch
provisions one locator agent for K clients. For N > K clients,
dN/Ke locator agents are provisioned in one Cloud region.
Within a Cloud region, simple load balancing mechanisms in
commercial Clouds can be configured to schedule localization
requests among locator agents. The topology is maintained in
a database that are shared among all locator agents in that
region.

Fig. 2. QWatch design with horizontal scaling

IV. QOE ANOMALY DETECTION AND LOCALIZATION

A. QoE Anomaly Detection

End-user QoE reflects the performance of complete end-to-
end systems. Users’ perception of QoE reveals anomalies. Let
q0 be the minimum value of QoE that users would accept.
Any QoE below q0 would impact users’ decision to continue
the VoD service. VoD providers need to maintain at least q0

to retain users [12]. VoD providers often conduct subjective
studies to obtain q0 for QoE [13].

We define QoE anomaly to be any fault or congestion
that degrades end user QoE such that users’ QoE values to
below q0. Any possible faults and temporary congestion that
do not degrade user QoE below q0 are not considered to be
a QoE anomaly. In our system, the client agent monitors end
user QoE q(t) in real time and detects QoE anomalies when
q(t) < q0. QoE is a measure of acceptability of an application
or service perceived subjectively by end users [14]. Various
metrics, such as the join time of a video sessions, the video
bitrate, the freezing time and the frequency of freezing have
been considered to model QoE [15] [16].

Dynamic Adaptive Streaming over HTTP (DASH) [17] is
currently the de facto video streaming technology in many
commercial VoD systems (e.g. YouTube and Netflix) [18].



In DASH, a video is encoded in multiple bitrates and each
bitrate version is split into a series of fixed length segments,
called chunks. DASH players detect the network throughput
in real time and adaptively select the bitrate for every chunk.
The video bitrate and the freezing time may change for every
chunk.

QWatch adopts a chunk based QoE model proposed in [19].
The chunk QoE model considers both the freezing time and the
video bitrate. The chunk QoE model is a cascading model that
combines existing QoE models of the freezing time and bitrate
as shown in Equation (1). QoE is computed for each video
chunk in the Mean Opinion Score (MOS) system [20]. QoE
varies from 1 to 5 corresponding to user acceptance levels.
The minimum acceptable QoE is when q0 = 1.

q(τ, r) =
1

5
qfreezing(τ) · qbit-rate(r) (1)

The existing freezing time model and bitrate model are pro-
posed by psychology study [21] and human vision study [22]
respectively, as shown in Equations (2) and (3).a1, a2, c1 ∼ c3
are fitted coefficients from subjective studies.

Qfreezing(τ) =

{
5− c1

1+(
c2
τ )c3

t > 0

5 t = 0
(2)

Qbit-rate(r) = a1 ln
a2r

rmax
(3)

B. QoE Anomaly Localization

If a streaming session has an acceptable QoE, all nodes in
its path are assumed to be functioning normally. We assume
that if a node has an anomaly, all video sessions going through
that node would have an unacceptable QoE.

We show examples of how anomalies can be located by
analyzing path information of video sessions affected by
anomalies. There are three types of nodes.
• Normal node: All nodes on a sessions delivery path with

acceptable QoE.
• Suspect node: Node on a session’s delivery path with

unacceptable QoE but does not belong to other delivery
paths with good QoE.

• Abnormal node: Node that is the only suspect node on a
session’s delivery path with unacceptable QoE. Rest of
the nodes in this delivery path are all normal.

If there are multiple suspect nodes in a streaming path, any one
or more of these nodes could be the cause of QoE anomaly.
When there are not enough clients to resolve the exact location
of the anomaly, we classify these nodes as suspect nodes.
Figure 3 illustrates how anomalies in server, router and client
can be located. In Figure 3 (a), there are two video sessions A
and B sharing the same path to server S. Client X perceives
QoE anomaly. Client Y has an acceptable QoE and all the
nodes through its path are labeled Normal. The session A then
labels node X Suspect. Session A only has one Suspect node
in its path. It is clear that the client itself has the anomaly and
is labeled Abnormal. Figure 3 (b) shows three sessions A, B
and C sharing the same path to two servers S1 and S2. There

is one anomaly server S1 and A is connected to S1. Sessions
B and C are connected to S2 and have acceptable QoE. All
nodes in their paths are labeled Normal. Then nodes X and S1

are labeled Suspect. If session A does not change its server,
we cannot exclude client X from suspect nodes. If session
A changes its server to S2 and client X has acceptable QoE,
then X is labeled Normal and S1 anomaly can be located.
Figure 3 (c) shows three sessions A, B and C going through
different paths to two servers S1 and S2. Session A and B
connect to server S2. Session C connects to server S1. There
is one anomaly router R. Sessions B and C have acceptable
QoE and all nodes in their path are Normal. Session A has
two nodes labeled Suspect. The router R is then located as
Suspect. In Figure 3 (a), X is the only Suspect node so it can
be determined as an anomaly node. In (b) and (c), X is not in
the path of other sessions with acceptable QoE so X cannot
be excluded from anomalies. QWatch labels both the anomaly
node and the client as Suspect nodes. QWatch can provide
better resolution if there are more user sessions sharing the
particular path in question.
C. Implementation of QoE Anomaly Detection

The client agent runs the QoE Anomaly Detection Algorithm
(QADA). The client agent traces its path to the video server
and reports to its locator agent. For each video chunk, the
client agent evaluates the chunk QoE q(i) and compares with
q0. If the chunk QoE q(i) ≥ q0, there is no QoE anomaly.
The client agent then reports acceptable QoE to its locator
agent periodically. If the chunk QoE q(i) ≤ q0, QoE anomaly
is detected and the client agent updates the locator agent
immediately. The client agent runs QADA until the streaming
session ends.

ALGORITHM 1: QoE Anomaly Detection Algorithm (QADA)

Data: Reporting period T ; Chunk length: T0; SLA for QoE: q0
1 Connect to the closest locator Lk by domain name
2 Download the DASH description file (MPD) from a CDN host by the video

URL
3 Obtain the cache server address S by the response
4 Trace the route from current client C to S and report the route

R = (C, S) to the locator agent Lk
5 Compute the reporting period in number of chunks: NT = T/T0

6 while Video streaming not ends do
7 Download next video chunk i
8 Compute QoE for current chunk q(i)
9 Obtain current server Si from chunk response

10 if Si 6= S then
11 Get the new route to the new server: R = (C, Si)
12 Report new route R to the locator

13 if q(i) > q(0) then
14 QoE status Qi = Acceptable at time ti
15 if (i > 0) and (i mod NT == 0) then
16 Report Update: Ui = (ti, Qi, R) to the locator

17 else
18 QoE status Qi = Unacceptable at time ti
19 Report Update: Ui = (ti, Qi, R) to the locator.

D. Topology Discovery from traceroute

When a locator agent receives path information from client
agents, the network topology is obtained for all the video
sessions. Client agents in QWatch probe their video servers
at the start of each video streaming session and also when



(a) QoE Anomaly on Client (b) QoE anomaly on server S1 (c) QoE anomaly on router R

Fig. 3. QoE anomaly localization in various cases

they are assigned to new servers. Client agents report path
data to their closest locator agents. We use traceroute to
obtain path data from client agents to construct tree topology
connecting clients to the video server. If one client streams
videos from multiple servers, then its path data is used to
construct a client rooted tree to multiple video servers. Upon
receiving a path data, the locator agent updates the regional
topology accordingly. Path data do not reveal all routers along
the path when the router disables the ICMP echo replies.
Some routers return private IP addresses. The locator agent
eliminates private IP addresses and hidden addresses when it
is constructing the topology. The locator agent treats every
two consecutive nodes as an edge. QWatch maintains the
topology graphs per Cloud region. The locator agent updates
the QWatch if it discovers new nodes and edges. The locator
agent obtains the ISP name and the AS number of a valid
IP node from a commercial API [23]. Router level topology
discovery has been well studied in [24] [25] and works well
for QWatch.

E. Implementation of QoE Anomaly Localization

When the locator agent receives a QoE update, it processes
the updates according to the QoE Anomaly Localization Algo-
rithm (QALA) to label the nodes. It locates the Suspect nodes.
When the locator agent receives an acceptable QoE update,
it retrieves all nodes in the path of the session and labels all
nodes Normal. If there are no sessions reporting QoE, the node
labels expire in ∆t seconds. If there is only one suspect node
in the path, the node is labeled Abnormal. The locator agent
then logs the localization results and waits for the next update
messages.

V. EXPERIMENTAL SETUP

We evaluate QWatch in two environments. The first one is
a controlled environment that emulates anomalies at different
locations in a small-scale VoD system. The second one is
a production environment that deploys the VoD system in
Microsoft Azure CDN and AWS CloudFront.

Controlled Environment Setup: The VoD system runs in
3 servers and 8 clients. The network topology of the VoD

ALGORITHM 2: QoE Anomaly Localization Algorithm (QALA)

Data: Time window ∆t: Node status labeled within ∆t is assumed as the
present status

1 while Receving Update U = (t, Q,R) from a client do
2 if Q == Acceptable then
3 Get all nodes {Ni} in R
4 for Ni ∈ R do
5 Update node status: SNi = Normal
6 Label the node: LNi = (t, SNi )

7 else
8 Get all nodes {Ni} in R
9 Initialize the number of suspect nodes as ns = 0

10 for Ni ∈ R do
11 Get the latest label on Ni, LNi = (tNi , SNi )
12 if t− tNi < ∆t and SNi == Normal then
13 continue

14 else
15 Determine current node’s status as SNi = Suspect
16 Label Ni with LNi = (t, SNi )
17 ns + +

18 if ns == 1 then
19 Find the node Ns with the latest label LNs = (tNs , SNs )

where SNs == Suspect
20 Update the label for Ns as LNs = (tNs , SNs ) where

SNs = Abnormal

21 Find all nodes NA = {Na|(SNa == Suspect) or
(SNa == Abnormal)}

22 Log anomaly event Et = (t, Q,R,NA)

system is shown in Figure 4. Three servers are deployed
in two regions of Microsoft Azure Cloud. Eight clients are
deployed in 3 campus networks in PlanetLab [26]. A is the
network in Rutgers University. B is the network in University
of South Florida. C is the network in Emory University. Each
campus network connects to the Cloud via different transit
ISP networks. There are 4 transit ISPs, 1 Cloud provider, and
3 campus network providers in the experimental VoD system.
Clients A1, B1, C1 stream from S0. Clients A2, B2, C2 stream
from S1. Clients A3, B3 stream from S2.

Production Environment Setup: We deploy QWatch in pro-
duction CDNs (Azure CDN and AWS CloudFront) and ana-
lyze QoE anomalies. We configure the caching of CDN to use
all edge locations that would provide the best performance. We
run 200 clients in PlanetLab to emulate users around the world.



Fig. 4. The topology of the experimental VoD

We provision 5 locator agents in different regions in Azure
Cloud to serve 200 clients at different geographical locations
as shown in Figure 5. We choose K = 100 and provision
locator agents in 5 available zones in Azure.

Fig. 5. The topology of the experimental VoD

VI. EVALUATION OF QOE ANOMALY DETECTION

A. Evaluation of Controlled Environment

We first consider the effectiveness of system metrics, such as
CPU/I/O/memory utilizations, network latency and throughput
for anomaly detection in VoD in the Cloud. These system
metrics can be obtained in commercial Clouds as well (e.g.
AWS CloudWatch and Azure Cloud monitor). We show sev-
eral examples of false positives and false negatives resulting
from anomaly detection systems based on system metrics.
We then compare QWatch with existing anomaly detection
methods. Existing anomaly detection methods find outliers in
system metrics [27]. The statistical outlier is defined as data
outside the range of 3 standard deviation [28]. We use the
statistical outlier detection for a comparison. We let client A3

stream videos from S2 and collect various server and network
metrics on S2. These metrics include CPU, I/O, memory
utilization, server outbound traffic throughput, network latency
between the server and a vantage point, and the number of TCP
retransmissions. All the metrics are collected by Performance
Co-Pilot [29]. The ICMP ping is probed from S0. We inject
several faults that appear often in Cloud and networks. These
faults include CPU, I/O and memory interferences, network
congestion in Cloud/client networks, and packet drops in client
network. VM interference are emulated by Stress tool [30] and

various network errors are emulated by the Linux network
emulator [31].

Figure 6 shows numerous false positives and false negatives
when system metrics are used to detect QoE anomalies. Figure
6 (a) compares CPU utilization metric in the Cloud with
the end user QoE. Although the CPU metric triggers an
anomaly alarm when the CPU interference is injected, it is
not sufficient to create QoE degradation thus resulting in false
positives. Figure 6 (b) considers I/O utilization metric with
QoE anomalies. Many false positive alarms result from I/O
interferences. However, I/O interferences do not impact end
user QoE. Similarly in Figure 6 (c), we show a false positive
case where memory interference impact memory utilization
metric but have little impact on user QoE. Figure 6 (d) and
(e) compare QoE anomalies with network metrics on server S2

with network errors. Figure 6 (d) shows that network conges-
tions in the Cloud greatly impact end user QoE. However,
the metric based system fails to trigger an anomaly alarm
as the vantage point do not capture such QoE degradation.
Figure 6 (e) shows that the client network congestions generate
QoE anomalies in the client. The metric based system again
fails to trigger an alarm in the network throughput of S2.
These represent false negative cases. The metric based system
sometimes correctly detects QoE anomalies when there are
numerous TCP retransmissions, namely when the network is
unstable. Figure 6 (e) further shows that many other anomalies
detected by the TCP retransmission metric do not indicate QoE
anomalies.

Cloud monitoring systems use metrics such as CPU speed,
CPU/disk utilizations, disk/memory throughput and network
throughput [32]. These metrics poorly reflect the user expe-
rience of video streaming in the Cloud. They fail to account
for many other factors that impact user QoE, such as faults in
Cloud/transit/client networks and user devices.

B. Evaluation in Production Environment
Commercial CDN providers offer their own monitoring

systems. They log errors in the cache servers that could impact
end user QoE. Common metrics are the HTTP response time,
the edge cache request status (cache/miss), and the HTTP
response code. We show how these errors logged in CDN
are correlated to QoE anomalies. We run QWatch with a VoD
site deployed in Amazon CloudFront on Jan. 9, 2016 from
00:00 am to 01:00 am. CDN logs are compared with several
user QoEs as shown in Figure 7. Figure 7 (a) shows the
logged HTTP response time and detected anomalies. There are
numerous anomalies detected before 00:10. Figure 7 (b) shows
QoE anomalies detected by QWatch. Anomalies in Figure 7
(a) correlate with some QoE anomalies but not all users are
affected. Errors logged in the cache server do not cause all
QoE anomalies as shown. Video players usually have fail-over
schemes on error responses and maintain a buffer to tolerate
temporary cache misses. Other QoE anomalies are shown in
red bars after 00:10 in Figure 7 (b). These anomalies are not
captured by measurement in CDN as shown in Figure 7 (a).
These experiments in production environment demonstrate that



(a) CPU interference (b) I/O interference (c) Memory interference

(d) Cloud network congestion
(Outbound bandwidth throttled on S2)

(e) Client network congestion
(Long latency to clients in campus network A)

(f) Unstable client network
(Packet drops in campus network A)

Fig. 6. QoE anomaly localization in various cases

(a) Response time logged in CDN and anomalies detected (b) QoE anomalies detected in end users

Fig. 7. CDN measurement vs. End-user QoE

there are numerous false positive and negatives in existing
measurement based anomaly detection methods.

VII. EVALUATION OF QOE ANOMALY LOCALIZATION

A. Evaluation in Controlled Environment

We inject anomalies at various components including server
S1, Cloud Network 1, Campus Network A and Client A1

to evaluate QWatch’s QoE anomaly localization. We use the
network emulator to throttle the bandwidth capacity for all
packets going through different locations. Clients A1, B1, C1

stream from S0. Clients A2, B2, C2 stream from S1. Clients
A3, B3 stream from S2. Figure 8 shows the entire nodes
involved in the experimental VoD system. Later figures only
show affected components. Figure 9 (a) shows the localization
results for two QoE anomalies caused by S1. Client A2 and
B2 are affected and their QoE degrades. A2 and B2 have

Fig. 8. Topology of experimental VoD with entire nodes

neighbors A1 and B1 streaming from another server S0. They
share the same path and shared nodes on their paths are labeled



(a) Anomaly at S1 (b) Anomaly at Cloud Network 1

(c) Anomaly at Campus Network A (d) Anomaly at A2

Fig. 9. QoE anomaly localization

Normal. Client A2, B2 and server S1 are labeled Suspect. S1

is then correctly found as the cause of the anomaly. Figure 9
(b) shows two QoE anomalies caused by the Cloud network
1. Client A2 and B1 stream videos from S1 and S0 through
Cloud network 1. Their neighbors A3 and B3 both stream
from S2 in Cloud network 2 and they have acceptable QoE.
All common nodes shared in client networks and transit ISPs
are labeled Normal. Nodes in Cloud network 1 are correctly
labeled as Suspects. Servers connecting to the Cloud network
1 have no anomalies. However, these servers do not provide
good QoE and they are labeled as Suspects. In this example,
Cloud network 1 and servers connecting to Cloud network
1 are both located as Suspects of QoE anomalies. Further
troubleshooting is needed to obtain localization with higher
resolution.

An anomaly is injected in the campus network A in Figure
9 (c). Clients A1, A2 and A3 connect to campus network A
with QoE anomalies. QWatch correctly labels all nodes in the
client network as Suspects. An anomaly is injected at client
A2 in Figure 9 (d). QWatch correctly locates the cause of
QoE anomaly by labeling client A2 as Suspect. Two nodes
that are exclusively on A2’s streaming path are also labeled as
Suspects. These nodes can be excluded from anomalous nodes
if further analysis of topology is performed. Six nodes in the
red circle in Figure 9 (d) connect to the same set of nodes
that are both on the path (A1 to S1) and on the path (A2 to
S1). We conjecture that these nodes belong to load balancing
networks. These nodes should be excluded from Suspects as a
whole because these load balancing networks are on the path
of client A1 with acceptable QoE.

B. Evaluation in Production Environment

We run QWatch on Windows Azure CDN on April 14, 2016
from 15:30 to 16:30. Results of QoE anomaly localization
are similar to those shown in Figure 9. Figure 10 shows the

count of QoE anomalies located in different components. The
data is collected from the locator agent in the east US region.
There are 219 QoE anomalies detected during 1 hour in the
region. Figure 10 shows that all QoE anomalies label clients as
Suspects. Interestingly, we do not observe any adaptive server
selection strategies in Azure CDN. There are 35 clients in
east US region and they all stay with the same video server
during the period of experiment. Therefore, when a client has
QoE anomalies, there is no other video delivery path providing
better QoEs. Thus, the client itself remains as a Suspect node.
We find that Azure CDN assigns users in a very broad area
(i.e. from Ottawa to Florida) to the same server. In a large
geographical area (i.e. US east, US west, Europe), users are
assigned to servers that are relatively close to them in terms
of network or geographical distances. We do not know the
details of Azure’s server allocation algorithm. Surprisingly, we
suspect that Azure’s algorithm is not as dynamic as we would
expect. A large number of QoE anomalies are also located

Fig. 10. QoE anomalies located at different components

in transit ISPs. Our 200 clients around the world connect
to Azure CDN through different ISPs. Results show that a
majority of QoE anomalies label transit ISPs and clients as



Suspects. We notice that there are few anomalies located in
servers and there is no anomaly located in the Cloud network.
The localization graphs for QoE anomalies in servers show that
most of these anomalies label server and other components as
Suspects at the same time due to the limited number of video
sessions. The number of QoE anomalies located in the servers
is relatively small compared to QoE anomalies located in
clients and transit ISPs. QWatch would have better resolution
identifying server and transit ISP anomalies if our experiments
had larger number of users.

C. Scalability Analysis

The locator agents are deployed on Basic A1 type VMs in
Microsoft Azure. The average time to locate a QoE anomaly
is around 200 ms. We have only one locator agent per region
and the topology database is deployed in the locator agent. All
client agents in one region report QoE updates to the locator
agent every minute. The processing time per update depends
on the number of hops in the video delivery path. K = 100
does not result in request failures in locator agents. As the
number of users increases, QWatch can horizontally scale the
locator agents. The network size to maintain per region is
bounded by K and the length of the path. The length of the
path is usually below 50 hops. As the number of users in one
region increases, the distributed database can adapt to maintain
the underlying topology.

VIII. CONCLUSION

QWatch uses end-user QoE to detect QoE anomalies and
correlate users’ data to locate QoE anomalies. We run exten-
sive experiments in a controlled VoD system and production
Cloud (Azure Cloud and CDN) to validate QWatch’s accuracy
in detection and localization. We find numerous false positives
and false negatives in production Cloud when system metric
based anomaly detection methods are used. QWatch correctly
detects and locates anomalies in controlled experiments. In
production Cloud, we validate QWatch with only 200 users.
Results show that a major of QoE anomalies are located in
clients and transit ISPs, servers and Cloud networks are less
likely to cause QoE anomalies. Interestingly, Azure CDN’s
server allocation algorithm may not be dynamic as we would
expect.
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