
Users Know Better: A QoE based Adaptive Control
System for VoD in the Cloud

Chen Wang∗†, Hyong Kim∗, Ricardo Morla†
chenw@cmu.edu, kim@ece.cmu.edu, ricardo.morla@fe.up.pt

∗Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA
†INESC Porto and Faculty of Engineering, University of Porto, Porto, Portugal

Abstract—As VoD systems migrate to the Cloud, new chal-
lenges emerge in managing user Quality-of-Experience (QoE).
The complexity of the cloud system due to virtualization and
resource sharing complicates the QoE management. Operational
failures in the Cloud could be challenging for QoE as well.
We believe that end users have the best perception of system
performance in terms of their QoE. We propose a QoE based
adaptive control system for VoD in the Cloud. The system learns
server performance from the user QoE and then adaptively selects
servers for users accordingly. We deploy our proposed system in
Google Cloud and evaluate it with hundreds of clients deployed
all over the world. Results show that given the same amount
of resources, our system provides 9% to 30% more users with
QoE above the Mean Opinion Score (MOS) “good” level than
the existing measurement based server selection systems. The
system guarantees a better QoE (above 6% better) for 90%
users. Additionally, our system discovers operational failures
by monitoring QoE and prevents streaming session crashes. A
computational overhead analysis shows that our system can easily
scale to large VoD systems containing thousands of servers1.

Keywords—VoD, QoE, Cloud, Adaptive Control, Server Selec-
tion

I. INTRODUCTION

The Cloud infrastructure has become an ideal platform
for large-scale applications with periods of flash crowds, such
as Video-on-Demand (VoD). The Cloud can provide elastic
amount of resources to meet the dynamic user demand [1]. As
VoD systems migrate to the Cloud, new challenges emerge for
VoD providers to manage user Quality-of-Experience (QoE)
[2]. Extra complexity due to virtualization and resource sharing
adds to the challenge.

In large-scale VoD systems, performance issues in various
components of the system, such as the server overload or the
network congestion, degrade the user experience. Commercial
systems (e.g. YouTube [3], Netflix and Hulu) use Content
Delivery Network (CDN) to improve the user experience. CDN
places video servers close to users in order to reduce their
server response time. CDN replicates the same content across
multiple servers to provide fault-tolerance. When one server is
unavailable, other replicas can serve the user request. In order
to improve the user experience, CDN providers (e.g. Akamai
[4]) perform extensive network and server measurements to
select an appropriate replica server and network path.

When VoD systems are deployed in the Cloud, it is
more challenging for VoD providers to offer consistently
good experience for users. The Cloud itself is complex. The

1This work was supported in part by CMU-SYSU CIRC, SYSU-CMU IJRI
and ICTI under Grant SFRH/BD/51150/2010.

Infrastructure as a Service (IaaS) in the Cloud is usually
offered by a virtualized datacenter consisting of a cluster of
physical machines (PMs). Each PM hosts multiple virtual
machines (VMs) possibly belonging to different customers.
The video server would be deployed in one of these VMs.
Multiple VMs on the same PM are sharing physical resources
such as CPU, disk, memory and network interface. Resource
sharing may lead to performance interference from other VMs.
The applications on the other customers VMs are not visible
to the VoD provider. A VoD provider cannot easily predict
its video server performance and usually would not have
control over other VMs. Even if there are no other VMs in
the physical host, the performance of a particular physical
host in the data center could be unpredictable as the user
has limited or no access to the physical host. Existing works
study the impact of interference by benchmarking the Cloud
using CPU/disk/memory/network intensive tasks. However, the
impact of interference can only be captured but cannot be
easily quantified [5]. The user QoE cannot be simply modeled
by resource measurements in the data center. Thus, we believe
that the best way to understand the performance impact is to
observe the user QoE directly. Instead of modeling complex
systems in the Cloud, we believe that the user QoE would give
the best indication of the system performance.

Provisioning cloud resources on the fly may cause failures
that are difficult to identify. A user request might be sent to
a server that has been removed. A new server might boot
with an outdated cache table and directs the user request to a
wrong server. Operational failures happen often. Servers may
hang due to sudden high user demands during peak hours.
A system administrator could misconfigure content folders.
Simple monitoring schemes like the network probing and the
server load monitoring cannot identify these failures [6]. When
a failure happens, the VoD provider may not know the cause of
the failure but users can definitely perceive early symptoms.
For example, before a streaming session crashes, the video
player on the user side may observe several video Chunk
request timeouts. The user would observe that the buffer is
depleting, or the video simply freezes for a while. One can
take advantage of these early symptoms to prevent streaming
crashes by adaptively selecting a backup server for the user.

We propose a QoE based adaptive control system that can
1) Monitor individual user QoE; 2) Infer server performance
directly from users’ QoE; 3) Adaptively select servers accord-
ing to the user QoE; and 4) Effectively respond to various
failures using user QoE.

To meet demands from millions of users, our system should
operate in a distributed fashion to scale. We adopt an agent
based system design that deploys agents in existing video

servers and client players for distributed control. Our system
runs in VoDs serving DASH streaming (Dynamic adaptive
video streaming over HTTP) [7]. We deploy our system
in Google Cloud [8] as our underlying cloud platform and
emulate hundreds of user clients in PlanetLab [9]. We evaluate
our system under various levels of interference and failures.
Results show that our QoE based control system outperforms
existing measurement based server selection systems in three
aspects: 1) Provides more users with QoE above a predefined
acceptable level; 2) Improves the worst QoE users; and 3)
Prevents streaming session crashes in a timely manner. Lastly,
we describe an overhead analysis that compares the scalability
of our system with the existing systems.

II. RELATED WORK

Quality-of-experience (QoE) is a subjective perception of
user’s acceptability of an application or a service [10]. There
are several works modeling QoE by quantitative quality-of-
service (QoS) metrics. Some works conduct subjective exper-
iments for the video streaming under various network impair-
ments. They apply machine learning methods or statistical
analysis [11] to model the QoE. Other works develop an
analytical model for QoE over a measurable quality metric,
such as freezing time [12] or bitrate [13]. They then use
subjective experiments to validate their assumptions.

With the recent advances in QoE modeling, existing works
apply user QoE in the control and management of video
streaming system. In [14], they study the QoE of the quality
transitions and propose a QoE-aware rate-adaptation system for
DASH streaming. In [15], the logarithm law is used to model
the user QoE over bit-rate. It proposes an optimized caching
algorithm to maximize users’ QoE in wireless network. A
varying QoE served from different servers in CDN is studied
in [16]. It designs a client-side QoE based server selection
algorithm for each client. This method assumes that a special
“iBox” device can be deployed in the client’s residential
network and the device is pre-configured with addresses of
servers in CDN. These assumptions limit its applicability in
production systems as the installations of “iBox” in large-scale
would be difficult.

The server selection is a topic extensively studied for the
purpose of improving user QoE in video streaming system.
Early studies of server selection utilize DNS to select a server
located close to users [17]. In CDN based VoD system, DNS
based server selection is used as a proximity aware server
selection scheme [18]. To balance load among servers, various
redirection schemes are combined with DNS based server
selection at a finer level [19]. Such schemes could be effective
to improve user QoE in CDN environment. They select a
server for users according to both the network proximity and
the server load. Measurement studies in YouTube also reveal
that network latency and server load are major factors in their
server selection scheme [3]. However, there still remain many
other factors impacting user QoE and these factors can neither
be considered completely nor be modeled accurately. Other
works about Quality of Service (QoS) aware routing focus
on QoS aware server selection in a pre-configured overlay
network [20], however, their solutions can hardly be adapted to
the Cloud environment where dynamic resource provisioning
can change the topology of overlay networks.

III. SYSTEM OVERVIEW
Our system consists of cache agents and client agents.

They together form the following functions: 1) individual user
QoE monitoring, 2) server performance inference, 3) the server
selection and 4) failover control. Client agent is a management
process running in the video player to monitor the client’s
QoE in real time. Cache agent runs in each video server,
collects clients’ QoE and infers server performance. Client
agents work with cache agents to perform QoE based controls
for the adaptive server selection and the failover response. Each
client agent communicates with a cache agent located closest
in network latency. In production VoD systems, we can use
the cloud DNS to select the closest cache agent for each client
agent.

We explain how our system operates step by step in Figure
1. We have a VoD client A requesting a video. A’s client agent
sends a query message with the requested video to its closest
cache agent S1 (Step 1). Upon receiving the query from A, S1

looks up its cache table and finds several candidate servers with
the requested video2. Each cache agent maintains a table of
server QoE scores. The server QoE score represents how well
a server performs. It is inferred by the QoE of clients served by
the server. S1 then looks up server QoE scores for candidate
servers, selects S2 that has the best score and responds to A’s
query (Step 2). Client A downloads the initial segment of the
video from S2 (Step 3). After receiving the initial segment,
the video player on A starts playing the video. The client agent
gets the QoS metrics, such as the freezing time and the bit-rate
of the segment, to compute its QoE with server S2 (Step 4).
If A freezes frequently waiting for the segment, A gets a bad
QoE for the initial segment. Client agent A then reports the
bad QoE to its cache agent S1 (Step 5). S1 receives A’s QoE
and infers S2 has unacceptable performance. S1 then updates
the server QoE score for S2 in its QoE score table (Step 6).
Cache agent S1 looks up its latest QoE score table and selects
S1 with the best QoE score for client A (Step 7). Client A
then switches to S1 and downloads the next segment from S1

(Step 8). Our system iteratively runs from 4 to 8 for all
segments of the video in the streaming session. The segment
is sufficiently sized to avoid unstable behavior.

Cache agents perform distributed control on the server side.
The client agent only undertakes the monitoring task and sends
QoE to the cache agent that infers system performance. When
there are multiple clients reporting their QoE for different
servers periodically, the cache agent learns multiple servers’
performance in near real time. As there is one cache agent
per video server, the QoE updates can be distributed to many
cache agents to avoid traffic overload.

IV. QOE-BASED ADAPTIVE CONTROL SYSTEM

A. Chunk QoE Model
For DASH streaming3, existing works obtain QoE from

various QoS metrics. These metrics including the streaming
bit-rate [15], the freezing time and the join time [11], etc. Our
system requires a real-time QoE model that can estimate user

2Distributed content discovery algorithms [21], like DHT, Chord, flooding
algorithm, etc., can dynamically discover servers caching a video. In our work,
we ran a MCCD algorithm in [22] on our cache agents to obtain the addresses
of multiple servers caching the requested videos.

3Commercial DASH players include Microsoft Smooth Streaming and
Adobe OSMF. Details of their bit-rate adaptation logic can refer to [23].

 Client Agent

The production cloud environment

 Cache Agent

Collect User QoE

User QoE based
Server Evaluation

Adaptive Server
Selection S1

S2

SN

QoE Monitoring
Failure Detection

SN-1

Sk

1

2 3
4

Server QoE
Score

S1 Q1

S2 Q2

... ...

Sk Qk

...

SN QN

5

6

7

7
8

QoE Update Evaluate Server QoE Score Server Query
and Response

Video Streaming

A

1 A query cache agent S1 the server
to download the initial chunk.

2
S1 initially selects server S2 for
client and informs A.

3 A downloads the initial chunk from
server S2

4 A monitor QoS metrics and evaluate
the real-time QoE q(S2).

5 Client agent C reports its latest QoE
q(S2) to the closest cache agent S1.

6 S1 updates S2 server QoE score Q2
based on q(S2).

S1 selects server S2 for A according
to the updated server QoE scores
and informs A.

7

8 Client A downloads next chunk from
server S1

Fig. 1: System Overview

experience, so we ignore the join time because it does not
change once the streaming starts. DASH encodes a video in
multiple bit-rates and split each bit-rate version into a series
of fixed length segments, called Chunks. During streaming,
the DASH player detects the network throughput in real time
and adaptively selects the bitrate for every Chunk. The finest
granularity we can compute QoE is for a Chunk because the
bitrate and the freezing time are measurable at Chunk-level.
A psychology study validates that user perception follows a
logarithm model [13] of bit-rate4 as shown in Equation (1). A
human vision study finds that user experience follows a logistic
model of freezing time [12] as shown in Equation (2).

qbit-rate(r) = a1 ln
a2r

rmax
(1)

r in Equation (1) is the bit-rate of a Chunk. rmax is the
maximum bit-rate available in DASH. a1 and a2 are empirical
parameters learned from subjective experiments.

qfreezing(τ) =

{
5− c1

1+(
c2
τ)c3

τ > 0

5 τ = 0
(2)

τ in Equation (2) is the freezing time caused by downloading
one Chunk. c1 to c3 are parameters learned by subjective stud-
ies. Both models follow Mean Opinion Score (MOS) standard
[24] to value QoE on a scale of 1 to 5 that represents “bad”,
“poor”, “fair”, “good” and “excellent” levels respectively. We
combine these two models to measure user QoE per Chunk as
shown in Equation (3).

q(τ, r) = δ · qfreezing(τ) + (1− δ) · qbit-rate(r) (3)

Ideally in DASH streaming, the bit-rate is lowered as much
as possible to avoid freezing. There would be no freezing
until the bit-rate drops to the lowest level. δ here denotes
the relative user experience (compared with the best possible
experience) in the lowest bit-rate level without freezing5. We
use the combination of existing analytical models as the Chunk
QoE. Other Chunk based QoE models are applicable to our
system if needed.

4The logarithm QoE model of bit-rate has been adapted to DASH streaming
in [15] as shown in equation (1).

5In our system, we set δ · 5 = 1, which corresponds to ”bad” experience
in MOS score.

B. QoE Score for Server Evaluation
Clients connecting to the same cache agent are likely to be

close to each other and have similar QoE. The cache agent can
use QoE collected from different clients to learn performances
of reported servers. Clients connecting to the same cache agent
are denoted to be in a client group. QoE from different clients
are used to infer server performance. The cache agent effec-
tively distributes QoE information to clients in the client group.
Each client learns from other clients’ QoE when selecting the
appropriate server. Consistency and variability of QoE from
the client group determines the effectiveness of sharing QoE
from various clients.

We use the reinforcement learning to infer the server
performance using collected QoE from clients. In reinforce-
ment learning [25], the rewards in earlier actions are used
to evaluate and to determine the next action. The goal is to
maximize the total reward gain of all actions. Collected QoE
of a particular server in a cache agent is a time-series data.
The client QoE represents the reward. The action is the server
selection and the total reward gain is the total QoE for all
clients in the client group. We define Server QoE Score (SQS)
to infer server performance based on client QoEs. The SQS
is non-stationary due to the changing server load, the varying
network condition, and the dynamic background interference.
We use the exponential weighted moving average to compute
the Server QoE Score as shown in Equation (4).

Qt(s) = (1− α) ·Qt−1(s) + α · qt(s) (4)

Qt(s) is the server s’s SQS at time t. qt(s) is QoE received
from clients at time t. α is the weight of the latest QoE
reward of selecting the server. Each cache agent maintains
Q(s) for reported servers over time. The SQS is initialized
as 5 (“Excellent”) for the server with the cache agent and as
4 (“Good”) for all other servers.

C. QoE based Adaptive Server Selection

Our QoE based adaptive server selection algorithm runs
in client and cache agents as follows. The client monitors its
QoE via the average of latest N chunk QoE. It then reports
its QoE on its streaming server to the closest cache agent
periodically (every N chunks). When the cache agent gets the
client’s QoE, it updates the SQS of the streaming server as (4)

shows, greedily chooses a server according to (5) and sends
the server address to the client agent. The client agent then
downloads following N chunks from the new server.

s∗(t) = argmax
s∈S

Qt(s) (5)

We apply the greedy method for simplicity. As videos are
distributed among different servers, the greedy method will
seldom direct many clients to a single server. Experimental
results validate our initial assumption of the system behavior.
D. QoE based Failover Control

Failures can happen in various components of the VoD
system. Some failures are hard to detect and identify. Ad-
ministrators can accidentally delete videos. Video server can
hang due to software errors. A VM terminates due to PM
failures. From the user’s perspective, all these failures end up
with a Chunk request timeout or a HTTP request error. We
designate these errors perceived by the user as unacceptable
QoE (q(s) = 0). When the cache agent receives q(s) = 0, it
sets α to 1 thus SQS becomes 0. The cache agent then selects
another server. The client then resends the Chunk request to the
newly selected server to prevent the streaming session crash.
When the cache agent itself fails, then we rely on DNS to
recover a new cache agent as done in existing systems.

V. SYSTEM PERFORMANCE

A. Experimental Setup
We implement and deploy the cache agent and the client

agent to evaluate our system. We deploy client agents in 284
PlanetLab nodes to emulate VoD clients. “f1-micro” instances
are provisioned in Google Cloud to serve as video servers. The
number of servers in each region is provisioned according to
the number of users in that region as shown in Table I. The
locations of clients and servers are shown in Figure 2. Google
discloses all their datacenter locations as red squares in Figure
2. They do not reveal which datacenter is used for the cloud
service. [26] infers that multiple zones of one region in Google
Cloud are datacenters located at green crosses in Figure 2. To
emulate a large number of videos, we rename the same video
clip (ten minute length video) as 1000 distinct videos. We
assume the popularity of these videos follow Zipf distribution
[27]. We use popularity based caching method to cache videos.
More popular videos are cached in more servers. Each video
is cached in at least 3 servers as shown in Table I.

We implement the following server selection schemes to
compare our system.
• HOP: Each request is redirected to the server with the

minimum hop number among servers with the requested
video.

• LOAD: Each request is redirected to the server with the
minimum load among servers with the requested video.

• RTT: Each request is redirected to the server with the the
minimum RTT among servers with the requested video.

• RANDOM: Each request is redirected to a randomly selected
server from servers with the requested video.

• QoE: Our system.
All existing systems, the client selects server only once at
the beginning of a video streaming session. These systems
represent CDN [19]. In RTT and LOAD, each server peri-
odically probes all other servers every 5 minutes. Smaller
probing period would incur large amount of probing traffic as

the number of servers increases. After redirection, the client
remains with the selected server for the whole video session.

Fig. 2: The locations of clients and servers in our system

B. System Performance under VM Interferences

We set up three scenarios to show the system performance
under various levels of interference. We first evaluate our
system in a real production cloud environment, the Google
Cloud without any additional stress on resources. Performance
of VMs in Google Cloud varies depending on the time and
physical machines Google allocates for our VMs. Our system
would experience VM interference due to the nature of Google
Cloud environment. The second scenario evaluates the system
under severe interferences. As we do not control physical
machines in Google Cloud, we emulate the severe interference
by throttling the outbound bandwidth to 4Mbps from 1Gbps
in two randomly selected servers. The third scenario evaluates
our system under highly dynamic interferences. We emulate
it by periodically throttling the outbound bandwidth to 4Mbps
from 1Gbps every 1 minute in two randomly selected servers.
We deploy 284 PlanetLab client nodes that request streaming
videos at the same time. Each client randomly requests a 10-
minute video according to its popularity.

First scenario, Google Cloud: Figure 3 (a) shows the
cumulative distribution of all users’ session QoE. The session
QoE is the average QoE of all Chunks in a single video
streaming session. The results show that our QoE method
gets the best session QoE for most users. We have over 76%
users with above QoE value 3 (3 in MOS corresponds to
the user satisfaction level “fair”). The RTT has 73% and the
HOP has only 49%. We have over 47% of users with above
QoE level “good” (QoE value 4). The RTT has 38% and the
HOP has only 17%. Our system has 9% and 30% more users
with session QoE above “good” level than the RTT and the
HOP respectively. It shows that, given the same amount of
resources, “good” level QoE can be obtained for more users in
our system. Our system has the 90th percentile QoE as 2.5708.
The 90th percentile QoE are 2.2393, 2.4187, 1.4445, 2.0423
for LOAD, RTT, HOP, and RANDOM respectively. Our system
performs 6.29% better than the RTT. The poor performance of
LOAD shows that the QoE degradation is not caused by the
server overload but other factors .The HOP method is designed
to select the closest server for users in terms of the network
distance. However, it has the worst performance in Figure 3
(a). We tested the same experiment in Google Cloud multiple
times at different hours. The performance of the HOP varies a
lot. We suspect that it is due to dynamic interference in Google
Cloud or varying network conditions. The results show that our
system always selects servers that serve better QoE without
having to identify causes of performance degradation.

TABLE I: Resource Provisioning & Content Caching in Experimental VoD System

Regions asia-east1 europe-west1 us-central1
Zones a b c b c d a b c d

of clientsa 42 123 132
Server S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

of servers 2 5 5
of servers 1 0 1 2 2 1 1 2 1 1
of videos 307 346 326 332 331 330 331 344 324 313 333 337

aThe client belongs to a region if its average RTT to all data centers in the region is smaller than other regions.

0 1 2 3 4 5

Session QoE

0.0

0.2

0.4

0.6

0.8

1.0

T
h
e
 p

e
rc

e
n
ta

g
e
 o

f
u
se

rs

The CDF of user session QoE

QoE
Load
RTT
Hop Number
Random

(a) Scenario 1: Google Cloud

0 1 2 3 4 5

Session QoE

0.0

0.2

0.4

0.6

0.8

1.0

T
h
e
 p

e
rc

e
n
ta

g
e
 o

f
u
se

rs

The CDF of user session QoE

QoE
Load
RTT
Hop Number
Random

(b) Scenario 2: Severe Interference

0 1 2 3 4 5

Session QoE

0.0

0.2

0.4

0.6

0.8

1.0

T
h
e
 p

e
rc

e
n
ta

g
e
 o

f
u
se

rs

The CDF of user session QoE

QoE
Load
RTT
Hop Number
Random

(c) Scenario 3: Dynamic Interference

Fig. 3: The cumulative distribution of session QoEs for all users

Second scenario, Severe Interference: Figure 3 (b) shows
that the QoE method has significant advantages over other
methods for those clients who are strongly impacted by the
interference. We observe that around 10% to 20% clients using
methods other than the QoE get session QoE below 1. These
affected clients selected servers with severe interference and
they suffered more freezing events due to the background
traffic interference. As QoE is neither monitored nor reported
from these clients, the system has no knowledge about their
performance. In contrast, the QoE method learns server perfor-
mance from user QoE and adaptively selects well-performing
servers.

Third scenario, Dynamic Interference: Figure 3 (c) shows
the QoE method has an absolute advantage over the RTT
in providing users with better QoE. The RTT performs the
worst. The RTT method probes servers every 5 minutes but
the interference appears every other minute, so it misses the
interferences. Periodic probing fails to capture the dynamic
changes of background interference.

We also test our system under various types of interference
in CPU, I/O, and memory. We emulate these interferences by
stressing corresponding resources on two randomly selected
servers. Our system outperforms other methods similarly. With
regard to different types of interference, there is a slight
difference on how much the interference impacts user QoE. I/O
and bandwidth interference seem to have higher QoE impact
than CPU and memory.

Extensive experimental results show that our system can
manage QoE better. There are more users obtaining QoE above
a pre-defined level and better QoE guarantees.

C. System Performance under Failures
We study how our system reacts to two types of failures.

The first one emulates an unresponsive video server on a
working VM due to various software errors and bursty user
demand. This failure leads a server to hang or crash. The
second one emulates an unresponsive VM. This is caused by
PM to hang or crash due to various failures in other coexisting

VMs. We initiate 284 clients requesting streaming videos at
the same time for 1 hour. Each client randomly chooses one
method from HOP, LOAD, RTT, RANDOM and QoE.

Clients using methods other than the QoE remain with
selected servers for the entire streaming session. They would
crash in both failure scenarios in the middle of streaming
session. Clients with QoE monitor QoE in real time and
report their real-time QoE to their respective cache agents.
Our system can operate despite server/VM failures. The cache
agent always selects a new server for clients when the client
reports an unacceptable QoE.

Figure 4 shows how our system reacts to the unresponsive
server failure on a working VM (first type of failure). We
emulate this failure by stoping the Apache server on S8 for
30 minutes in the middle of the streaming. Figure 4 (a)
shows several clients’ QoE curvesover time. Clients with HOP,
LOAD, RTT, and RANDOM all crashed after the server was
stopped. We find the available buffer of the client with the QoE
dropped from 22.35 seconds to 11.55 seconds right after the
Apache server stopped. While playing out the video from the
buffer, the client with the QoE method overcame the failure by
switching to S12 as shown in Figure 4 (b). The cache agent of
the client is S10, so we show the server QoE scores evaluated
on S10 in Figure 4 (c). It shows that at time 0:15, the QoE
score of S8 dropped to 0 indicating the server failure. Before
the S8 failure, S8’s SQS was higher than S12’s SQS. Thus
S8 was selected. After the S8 failure, S12’s SQS became the
highest thus selected for the client and overcame the failure.
Figure 4 (d) shows the S8’s SQS on all cache agents. All cache
agents discovered S8 failure right after 0:15.

For the second type of failure (the unresponsive VM
failure), the observed SQS is similar to the first scenario. The
RTT and LOAD discovered the VM failure within 5 minutes,
but this did not prevent crashes of on-going streaming sessions.

D. Overhead Analysis
There are N = 284 clients connecting to M = 12 cache

agents to report their Chunk QoE periodically. On average,

(a) QoE of Clients impacted by S8 (b) Server selected for all Chunks in the
client using QoE method

00:00 00:15 00:30 00:45 02:00
0

1

2

3

4

5

S
e
rv

e
r

Q
o
E
 S

co
re

(0
-5

)

S12

S11

S7

S6

S5

S4

S3

S2

S1

S10

S9

S8

(c) SQS evaluated on cache agent S10.S10 is
the cache agent for the client using QoE

method shown in (a)(b).

(d) S8’s SQS evaluated on all cache agents
over time.

Fig. 4: System performance under the failure of unresponsive server

each cache agent receives 2N
M messages in every period6.

Assume that we fix the value N
M = c as a constant meaning

that the resource is provisioned according to the user demand.
The average number of QoE update messages sent to each
cache agent is constant determined by c, the average number
of clients served by one server. LOAD and RTT probe every
5 minutes. Their total traffic is M2

5 per minute. It increases
quadratically with the number of servers. LOAD and RTT
cannot adapt to a large-scale system with thousands of servers.

VI. CONCLUSION

We propose a QoE based adaptive control system for
VoD in the Cloud. Extensive experimental results on our
system show that our system can manage users’ QoE better
than existing measurement based server selection systems.
Our system has more users obtaining QoE above a pre-
defined level, provides better QoE guarantees and operates
despite server/VM failures. These results validate our belief
that QoE gives the best perception of system performances,
well over widely used measurements, such as RTT and server
load. Our future work can proceed in using QoE in other
aspects of system control, such as content caching and resource
provisioning.

REFERENCES

[1] Y. Wu, C. Wu, B. Li, X. Qiu, and F. C. Lau, “CloudMedia: When Cloud
on Demand meets Video on Demand,” in ICDCS. IEEE, 2011, pp.
268–277.

[2] T. Hobfeld, R. Schatz, M. Varela, and C. Timmerer, “Challenges of
QoE management for cloud applications,” Communications Magazine,
vol. 50, no. 4, pp. 28–36, 2012.

[3] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and
S. Rao, “Dissecting video server selection strategies in the youtube
cdn,” in ICDCS. IEEE, 2011, pp. 248–257.

[4] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante,
“Drafting behind akamai (travelocity-based detouring),” in SIGCOMM,
vol. 36, no. 4. ACM, 2006, pp. 435–446.

[5] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in MMSys. ACM, 2010, pp.
35–46.

[6] S. Pertet and P. Narasimhan, “Causes of failure in web applications
(cmu-pdl-05-109),” Parallel Data Laboratory, p. 48, 2005.

6In our system, the video is split into 5-second Chunks and clients report
the average QoE of every 6 Chunks to reduce the amount of QoE reporting
traffic. Considering a large-scale VoD system with 1 million clients and 1000
video servers, there would be 2×10B×1 million/(1000×6×5 seconds) =
40KB/minute QoE traffic sent to one server if we count 10B for one message
(including an IP address and a float type QoE value). We believe the amount
of QoE traffic has minimal impact on both servers and networks compared to
the volume of traffic generated by video streaming.

[7] T. Stockhammer, “Dynamic adaptive streaming over HTTP: standards
and design principles,” in MMSys. ACM, 2011, pp. 133–144.

[8] (2015, March) Google cloud platform. [Online]. Available: https:
//cloud.google.com/

[9] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: an overlay testbed for broad-coverage
services,” SIGCOMM, vol. 33, no. 3, pp. 3–12, 2003.

[10] I. SG12, “Definition of Quality of Experience,” TD 109rev2 (PLEN/12),
Geneva, Switzerland, pp. 16–25, 2007.

[11] M.-N. Garcia, F. De Simone, S. Tavakoli, N. Staelens, S. Egger,
K. Brunnstrom, and A. Raake, “Quality of experience and HTTP
adaptive streaming: A review of subjective studies,” in QoMEX, Sept
2014, pp. 141–146.

[12] S. Van Kester, T. Xiao, R. Kooij, K. Brunnström, and O. Ahmed,
“Estimating the impact of single and multiple freezes on video quality,”
in IS&T/SPIE Electronic Imaging, 2011.

[13] P. Reichl, B. Tuffin, and R. Schatz, “Logarithmic laws in service quality
perception: where microeconomics meets psychophysics and quality of
experience,” Telecommunication Systems, vol. 52, no. 2, pp. 587–600,
2013.

[14] R. K. Mok, X. Luo, E. W. Chan, and R. K. Chang, “QDASH: a QoE-
aware DASH system,” in MMSys. ACM, 2012, pp. 11–22.

[15] W. Zhang, Y. Wen, Z. Chen, and A. Khisti, “QoE-driven cache man-
agement for http adaptive bit rate streaming over wireless networks,”
Multimedia, Transactions on, vol. 15, no. 6, pp. 1431–1445, 2013.

[16] H. A. Tran, S. Hoceini, A. Mellouk, J. Perez, and S. Zeadally,
“QoE-based server selection for Content Distribution Networks,” IEEE
Transactions on Computers, no. 11, pp. 2803–2815, 2014.

[17] A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness of DNS-
based server selection,” in INFOCOM. IEEE, 2001.

[18] J. Pan, Y. T. Hou, and B. Li, “An overview of DNS-based server se-
lections in content distribution networks,” Computer Networks, vol. 43,
no. 6, pp. 695–711, 2003.

[19] S. Bakiras, “Approximate server selection algorithms in content distri-
bution networks,” in ICC, vol. 3. IEEE, 2005, pp. 1490–1494.

[20] Z. Li and P. Mohapatra, “QRON: QoS-aware routing in overlay net-
works,” Selected Areas in Communications, IEEE Journal on, vol. 22,
no. 1, pp. 29–40, 2004.

[21] J. Gao and P. Steenkiste, “Design and evaluation of a distributed scalable
content discovery system,” JSAC, vol. 22, no. 1, pp. 54–66, 2004.

[22] C. Wang, H. Kim, and R. Morla, “QoE driven server selection for VoD
in the Cloud,” in IEEE Proceedings of 8th International Conference on
Cloud Computing (CLOUD), June 2015, pp. 917–924.

[23] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP,” in
MMSys. ACM, 2011, pp. 157–168.

[24] P. ITU-T RECOMMENDATION, “Subjective video quality assessment
methods for multimedia applications,” 1999.

[25] A. G. Barto, Reinforcement learning: An introduction. MIT press,
1998.

[26] D. Mytthon. (2014, March) 5 things you probably don’t know about
Google Cloud. [Online]. Available: https://gigaom.com/2014/03/02/
5-things-you-probably-dont-know-about-google-cloud/

[27] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “Analyzing
the video popularity characteristics of large-scale user generated content
systems,” TON, vol. 17, no. 5, pp. 1357–1370, 2009.

